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DETECTION OF A CHANGE POINT WITH LOCAL POLYNOMIAL FITS
FOR THE RANDOM DESIGN CASE

J. Huh1 and B.U. Park2∗

Duksung Women’s University and Seoul National University

Summary

Regression functions may have a change or discontinuity point in the ν th derivative func-
tion at an unknown location. This paper considers a method of estimating the location and
the jump size of the change point based on the local polynomial fits with one-sided kernels
when the design points are random. It shows that the estimator of the location of the change
point achieves the rate n−1/(2ν+1) when ν is even. On the other hand, when ν is odd, it
converges faster than the rate n−1/(2ν+1) due to a property of one-sided kernels. Computer
simulation demonstrates the improved performance of the method over the existing ones.

Key words: discontinuity point; non-parametric regression; one-sided kernel; rate of convergence;
two-sided Brownian motion; weak convergence.

1. Introduction

Most non-parametric regression techniques have been developed to estimate a smooth re-
gression function without the need for parametric assumptions on the regression function. The
estimators are usually smooth as well, and their rates of convergence depend on the smooth-
ness of the underlying regression function. In practice, however, we are often interested in
estimating a regression function which has some change points in itself or in its derivatives.
The usual non-parametric approaches suffer from poor practical and theoretical performance
in such situations.

In recent work with the kernel-based approach, Müller (1992) gave weakly consistent
estimators for the location and the corresponding jump size of a change point in the ν th
derivative of the regression function, and provided the rate of the global Lp convergence
for a kernel regression estimator adjusted at the location of the change point. For the case
ν = 0, Loader (1996) proposed a change point estimator, based on the local polynomial fits,
that attains the n−1 rate. It is assumed in her paper that the errors are normal. Müller &
Song (1997) and Gijbels, Hall & Kneip (1999) also suggested two-step kernel type estimators
achieving the rate n−1 . Gijbels & Goderniaux (2004) generalized the procedure of Gijbels et
al. for discontinuous ν th derivatives and proposed a method of bandwidth selection. Horváth
& Kokoszka (2002) gave a test statistic, based on local polynomial fits, for testing existence
of a change point in the ν th derivative in the fixed design case. Grégoire & Hamrouni (2002)
established the n−1 rate of convergence for the change point estimator of a regression function
based on local linear fits in the random design case. They conjectured that the rate n−1/(2ν+1)
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426 J. HUH AND B.U. PARK

would be achieved for a change point in the ν th derivative. All these investigations, except
Grégoire & Hamrouni (2002), focused on regression models with fixed designs or the case
where ν = 0.

In this paper, we extend Loader’s work to the case where a change point occurs in the
ν th (ν ≥ 0) derivative, where the design points are random, and errors have an arbitrary
distribution. We consider an estimator of the change point in the ν th derivative using the local
polynomial methods. As in Loader (1996), we use a one-sided kernel which is supported
on the positive half-line and has a non-zero value at the left end of the support. The latter
property of the kernel leads to a faster rate of convergence in comparison with Müller (1992).
In fact, the estimator for the location of the change point achieves the rate n−1/(2ν+1) when ν

is even, and a different, faster, rate when ν is odd. These rates of convergence are superior to
those of Müller, and we show that they are achieved under a weaker assumption of smoothness
on the regression function. In the simulation study, we observe that the proposed estimator
outperforms Müller’s estimator in small sample cases too.

There are some related works in the change point detection problem. Raimondo (1998)
provided a minimax optimal rate for a class of regression functions. Wang (1995) and Rai-
mondo (1998) followed wavelet coefficient approaches for detecting change points. Koo
(1997) used the linear splines to estimate discontinuous regression functions. Yin (1988), Wu
& Chu (1993), Qiu (1994) and Braun & Müller (1998) considered multiple change points de-
tection problems. Especially, Wu & Chu (1993) suggested using a series of tests to determine
the number of change points. Qiu (1994) proposed an almost surely consistent estimator of
the number of change points. McDonald & Owen (1986), Hall & Titterington (1992), and
Qiu & Yandell (1998) introduced smoothing algorithms to detect change points and calculate
the regression estimates. Other related results can be found in Müller & Wang (1990), Müller
(1993), Carlstein, Müller & Siegmund (1994), Eubank & Speckman (1994) and Jose & Ismail
(1999).

This paper is organized as follows. Section 2 defines the estimators for the location of
the change point and for the corresponding jump size. Section 3 describes their asymptotic
properties. Section 4 investigates the finite sample performances of the methods through
several simulated examples. Section 5 gives the proofs of the asymptotic results.

2. Change point model and the estimators

The random design regression model arises when we observe a bivariate sample {(Xi, Yi):
i = 1, 2, . . . , n} of (X, Y ). Let m(x) = E(Y |X = x) denote the regression function. We
denote by v(x) the conditional variance of Y given X = x, and by f the design density of
X. In this case, the regression model can be written as

Yi = m(Xi)+ v(Xi)
1/2εi (i = 1, . . . , n) , (1)

where, conditional on X1, . . . , Xn , the εi are independent random variables with mean 0 and
variance 1.

We assume that a change point exists for the ν th derivative of m, denoted by m(ν), at
some point τ in the interior of the support of f, as given in Assumption A1.

Assumption A1. There exists a constant L such that

|m(ν)(x)−m(ν)(y)| ≤ L|x − y| whenever (x − τ)(y − τ) > 0 ,
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DETECTION OF A CHANGE POINT WITH LOCAL POLYNOMIAL FITS 427

i.e. m(ν) satisfies the Lipschitz condition of order 1 over [0, τ) and (τ, 1]. The jump size at
the change point τ in the ν th derivative of m is given by �ν = m

(ν)
+ (τ) − m

(ν)
− (τ) where

m
(ν)
+ (τ) = limx→τ+ m(ν)(x), m

(ν)
− (τ) = limx→τ− m(ν)(x). We assume 0 < |�ν| < ∞.

Let us assume the following additional conditions on the design density f and the con-
ditional variance function v.

Assumption A2. The function f is supported on [0, 1], and satisfies the Lipschitz condition
of order 1 over [0, 1], and infx∈[0,1] f(x) > 0.

Assumption A3. The function v satisfies the Lipschitz condition of order 1 over [0, 1].

Let p be a positive integer satisfying p ≥ ν. Define m̂
(ν)
+ (x) = ν!α̂+

ν as the right-
side estimator for m(ν)(x), where the (p + 1) × 1 column vector α̂+ = (α̂+

0 , α̂
+
1 , . . . , α̂

+
p )

minimizes the right-side kernel weighted local least squares:

n∑
j=1

(
Yj − ∑p

�=0α�(Xj − x)�
)2
K

(Xj − x

h

)
. (2)

Likewise, define the left-side estimator m̂(ν)
− (x) by ν!α̂−

ν , where the (p+1)×1 vector α̂− =
(α̂−

0 , α̂
−
1 , . . . , α̂

−
p ) minimizes (2) with K(h−1(Xj − x)) being replaced by K(h−1(x − Xj)).

Here, K is a kernel function with support [0, 1] and h = hn is a sequence of bandwidths,
which satisfy the following assumptions.

Assumption A4. The function K satisfies
∫ 1

0 K(u) du = 1, and K(0) > 0,K(u) ≥ 0 for
0 < u ≤ 1, and its first derivative K′ satisfies the Lipschitz condition of order 1.

Assumption A5. h → 0, nh2ν+1/ log n → ∞, and nh2ν+3 → 0, as n → ∞.

The estimators m̂(ν)
+ (x) and m̂

(ν)
− (x) are based on the one-sided data at the right and the

left of x, respectively. We estimate the jump size at a point x by taking the differences of these
two estimators: �̂ν(x) = m̂

(ν)
+ (x) − m̂

(ν)
− (x). A reasonable estimator τ̂ of τ is the value of

x that maximizes |�̂ν(x)|. Let Q ⊂ (0, 1) denote a closed interval such that τ ∈ Q. Define

τ̂ = inf
{
z ∈ Q:

∣∣�̂ν(z)
∣∣ = sup

x∈Q

∣∣�̂ν(x)
∣∣}

for the location of the change point τ. We call this the local polynomial change point (LPCP)
estimator. An estimator of the jump size �ν can be obtained by

�̂ν(τ̂) = m̂
(ν)
+ (τ̂)− m̂

(ν)
− (τ̂) . (3)

3. Asymptotic properties

Let X denote an n × (p + 1) matrix with (i, j)th element equal to ((Xi − x)/h)j−1,

and Y = (Y1, . . . , Yn). The first column vector of X defined above is (1, 1, . . . , 1). Let W+
be an n× n diagonal matrix having K((Xi − x)/h)/h as its diagonal elements. Define W−
likewise. Then the weighted least squares function (2) can be written as

(Y − Xβ)TW+(Y − Xβ) , (4)
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where β = (α0, hα1, . . . , h
pαp). Define the minimizer of (4) by β̂+ = (β̂+

0 , . . . , β̂
+
p ).Assum-

ing invertibility of XTW+X, the standard weighted least squares theory leads to the solution
β̂+ = (XTW+X)−1XTW+Y . Analogously, β̂− = (XTW−X)−1XTW−Y . Then, the esti-
mators β̂+

� and β̂−
� can be written as

β̂+
� = h�α̂+

� , β̂−
� = h�α̂−

� (� = 0, . . . , p) .

Let Sn = n−1XTW+X and Tn = n−1XTW−X. The (j, �)th entries of Sn and Tn are∑n
i=1((Xi−x)/h)j+�−2K((Xi−x)/h)/(nh),

∑n
i=1((Xi−x)/h)j+�−2K((x−Xi)/h)/(nh),

respectively. Define ei = (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 appearing at the i th position, and

W+
ν (x, u) = eT

ν+1S
−1
n (1, u, . . . , up)K(u) , W−

ν (x, u) = eT
ν+1T

−1
n (1,−u, . . . , (−u)p)K(u) .

Here, we write W±
ν (x, u) rather than just W±

ν (u) to stress their dependence on x through Sn
and Tn . Then, the estimators m̂(ν)

+ (x) and m̂
(ν)
− (x) can be written as

m̂
(ν)
+ (x) = ν!

nhν+1

n∑
j=1

W+
ν

(
x,
Xj − x

h

)
Yj and m̂

(ν)
− (x) = ν!

nhν+1

n∑
j=1

W−
ν

(
x,
x −Xj

h

)
Yj .

To derive the asymptotic expressions for m̂
(ν)
+ (x) and m̂

(ν)
− (x), let S and T denote

(p + 1) × (p + 1) matrices having their (i, j)th entries equal to
∫ 1

0 K(u)ui+j−2 du and∫ 1
0 K(u)(−u)i+j−2 du, respectively. Note that

(Sn)ij = (
E(Sn)

)
ij

+Op

(( log(1/h)

nh

)1/2) = f(x)(S)ij +O(h)+Op

(( log(1/h)

nh

)1/2)
uniformly in x ∈ Q by Assumption A2, from which we obtain Sn = f(x)S(1 + op(1))

uniformly in x ∈ Q by Assumption A5. Let K+
ν (u) = eT

ν+1S
−1(1, u, . . . , up)K(u). Then

W+
ν (x, u) = 1

f(x)
K+
ν (u)

(
1 + op(1)

)
. (5)

Similarly, letting K−
ν (u) = eT

ν+1T
−1(1,−u, . . . , (−u)p)K(u), we have

W−
ν (x, u) = 1

f(x)
K−
ν (u)

(
1 + op(1)

)
. (6)

In (5) and (6), the op(1) terms are uniform in x ∈ Q and in u ∈ [0, 1]. The functions K+
ν

and K−
ν are the so-called equivalent kernels discussed in Müller (1987). They satisfy the

following moment conditions (see e.g. Fan & Gijbels, 1996 p .103):∫
u�K+

ν (u) = δν� and
∫
(−u)�K−

ν (u) = δν� (0 ≤ ν, � ≤ p) ,

where δ is the Kronecker delta function. Assume that the equivalent kernel K−
ν satisfies

Assumption A6.

Assumption A6. K−
ν (0) > 0.
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DETECTION OF A CHANGE POINT WITH LOCAL POLYNOMIAL FITS 429

First, in Theorem 1 below we describe weak convergence of the sequence of the process
{ϕnν(z): −M < z < M} where

ϕnν(z) =



(nh2ν+1)(ν+1)/(2ν+1)

(
�̂ν

(
τ + h

(nh2ν+1)1/(2ν+1) z
)

− �̂ν(τ)
)

when ν is even,

(nh2ν+1)(ν+1)/2ν
(
�̂ν

(
τ + h

(nh2ν+1)1/2ν z
)

− �̂ν(τ)
)

when ν is odd,

(7)
and M < ∞. Existence of the unique maximizer (minimizer) of the limit of the process ϕnν
when �ν > 0 (�ν < 0) is discussed later on. The process ϕnν lies in the space, denoted
D([−M,M]), of functions defined on [−M,M] having, at most, finitely many discontinuities.
To obtain the theorem, consider the following additional assumption.

Assumption A7. E(|Y |2+ζ |X = x) < ∞, for all x and some positive ζ.

Let
w→ denote weak convergence in the space D([−M,M]), and denote the first-order

derivatives of K±
ν by K′±

ν .

Theorem 1. Suppose that Assumptions (A1)–(A7) are satisfied.

(i) If ν is even, then

ϕnν(z)
w→ ϕν(z) = − �ν

ν + 1
K−
ν (0)|z|ν+1 + σ1W(z) , (8)

where W(z) is the two-sided Brownian motion defined in Bhattacharya & Brockwell
(1976), and

σ1 =
√

4(ν!)2v(τ)+�2
0 I (ν = 0)

f(τ)
K−
ν (0) . (9)

(ii) If ν is odd, then

ϕnν(z)
w→ ϕν(z) = − �ν

ν + 1
K−
ν (0)|z|ν+1 + zU , (10)

where U
d= N(0, σ2

2 ) and

σ2
2 = 2(ν!)2

v(τ)

f(τ)

∫ 1

0
K′−
ν (u)2 du . (11)

Remark 1. When the conditional variance function v depends on m, it is likely that v also
has a change point at τ. In that case, the asymptotic variance parts of the limit processes ϕν in
(8) and (10) are slightly changed. Define v+(τ) = limx→τ+ v(x) and v−(τ) = limx→τ− v(x).

Then, v(τ) in (9) is replaced by v+(τ) when z ≥ 0, and by v−(τ) when z < 0. On the other
hand, 2v(τ) in (11) is replaced by v+(τ)+ v−(τ).

Remark 2. The asymptotic variance of ϕnν given at (9) and (11) depends on the design
density f as well as the variance function v. When ν = 0, it involves the extra term �2

0 too.
We note that the asymptotic variances of Müller (1992) and Loader (1996) depend only on
v (see Müller, 1992 Theorem 3.1 and Loader, 1996 Theorem 1) since they are for the fixed
uniform design case.
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430 J. HUH AND B.U. PARK

Remark 3. Since T = ESE where E = diag((−1)0, (−1)1, . . . , (−1)p), the equivalent
kernel K−

ν can be rewritten as K−
ν (u) = (−1)νeT

ν+1S
−1(1, u, . . . , up)K(u). It follows that

K+
ν (u) = (−1)νK−

ν (u) (0 ≤ u ≤ 1) . (12)

In fact, this relation makes it possible to state the theorems in terms of K−
ν and K′−

ν only, and
has an important consequence as we discuss below.

Next, we describe the asymptotic distribution of τ̂. For this, we observe that the max-
imizer of the limit process ϕν exists and is unique with probability one. In the case where
�ν > 0 and ν is even, this follows directly from Bhattacharya & Brockwell (1976 Re-
mark 5.3), where it is argued that the maximizer of the two-sided Brownian motion with an
additional drift is unique with probability 1. Now, when �ν > 0 and ν is odd, the Gaussian
process ϕν in (10) has a unique maximum at

Zν =
( U

�νK
−
ν (0)

)1/ν
. (13)

The other case where �ν < 0 is analogous.
Theorem 2 describes the asymptotic distribution of τ̂.

Theorem 2. Suppose that the assumptions in Theorem 1 are satisfied.

(i) If ν is even, then

n1/(2ν+1)(τ̂ − τ)
d→




argmax
z∈(−∞,∞)

ϕν(z) when �ν > 0,

argmin
z∈(−∞,∞)

ϕν(z) when �ν < 0.

(ii) If ν is odd, then
√
nh(τ̂ − τ)ν

d→ N
(

0,
σ2

2

�2
νK

−
ν (0)

2

)
.

According to Theorem 2, the rate of convergence of τ̂ decays rapidly as ν increases.
The rate differs for ν even and ν odd. When ν is even, the LPCP estimator achieves the rate
n−1/(2ν+1). When ν is odd, it is (1/nh)1/2ν. If we choose the bandwidth h = O(n−1/(2ν+2)),

which satisfies Assumption A5, τ̂ achieves the rate n−(2ν+1)/(2ν(2ν+2)). For instance, a change
point of the first derivative can be estimated at the rate Op(n

−3/8) rather than Op(n
−1/3).

This faster rate n−(2ν+1)/(2ν(2ν+2)) for odd ν comes from the property (12) of the equivalent
kernels K+

ν and K−
ν . In the following paragraph we elaborate this phenomenon further.

Consider a process χnν(·, bnν, cnν) = cnν(�̂ν(τ+bnν·)−�̂ν(τ)) for some sequences bnν
and cnν converging to 0 and infinity, respectively, as n tends to infinity. Note that χnν equals
the process ϕnν defined at (7) with specific choices of bnν and cnν . The rate of convergence
of the change point estimator τ̂ is determined by bnν for which the process χnν has a proper
limit. We see later, following the proof of Lemma 1 in Section 5, that

E
(
χnν(z, bnν, cnν)

) = c1(z)b
ν+1
nν cnνh

−ν−1 .

Also, we show, following the proof of Lemma 2 in Section 5, that the asymptotic covariance
of χnν(z1, bnν, cnν) and χnν(z2, bnν, cnν) for different z1 and z2 equals

c2(z1, z2)bnνc
2
nνn

−1h−2ν−2(K+
ν (0)+K−

ν (0)
)2 +O(b2

nνc
2
nνn

−1h−2ν−3) . (14)
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In the case where ν is odd, the first leading term on the right-hand side of (14) vanishes
since K+

ν (0) + K−
ν (0) = 0 by (12). For χnν to have a stable limit process, bnν needs

to satisfy bν+1
nν cnνh

−ν−1 ∼ 1 and b2
nνc

2
nνn

−1h−2ν−3 ∼ 1. These considerations yield the
rate bnν = (1/nh)1/2ν when ν is odd. In the case where ν is even, the first term on the
right-hand side of (14) does not vanish, and thus the relatively slower rate bnν = n−1/(2ν+1)

is obtained from bν+1
nν cnνh

−ν−1 ∼ 1 and bnνc
2
nνn

−1h−2ν−2 ∼ 1.

Remark 4. The asymptotic variance of τ̂ depends on f(τ). Theorem 2 shows that the change
point estimator gets more stable as the density at the change point increases.

Remark 5. For all ν, the rates for the LPCP estimators are faster than those for the Müller
(1992) estimators under the weaker smoothness assumption on the regression function as given
at Assumption A1. As in Loader (1996), this property of faster convergence is due to Assump-
tionA6 on the one-sided kernel function. Assumptions (M2) and (K1) of Müller (1992) require
the existence of a function g which is at least 2ν+1 times continuously differentiable and that
m(ν)(x) = g(ν)(x)+�ν I (τ ≤ x ≤ 1), 0 ≤ x ≤ 1. For example, Müller (1992 Corollary 3.1)
shows that his estimator may achieve the rates (b/n)1/2 and (b3/n)1/6 for ν = 0 and 1,
respectively, when a bandwidth b is chosen to satisfy the assumption (B1) in that paper. In
particular, if the bandwidth b ∼ (log n/n)n1/(2+ζ) for ζ which appears in Assumption A7,
the achieved rate for ν = 0 equals n−1(log n)1/2n1/(2(2+ζ)), which gets arbitrarily close to
n−1(log n)1/2 as ζ tends to infinity.

As another consequence of Theorem 1, Corollary 1 describes the asymptotic distribution
of the estimator �̂ν(τ̂) for the jump size defined at (3).

Corollary 1. Under the assumptions of Theorem 1,

√
nh2ν+1

(
�̂ν(τ̂)−�ν

) d→ N

(
0, 2(ν!)2

v(τ)

f(τ)

∫ 1

0
K−
ν (u)

2 du

)
.

If v has a change point at τ, the asymptotic variance in Corollary 1 is replaced by
(ν!)2f(τ)−1(v+(τ) + v−(τ))

∫ 1
0 K−

ν (u)
2 du.

4. Numerical experiments

We compare the LPCP estimator τ̂ with the one given by Müller (1992), the latter being
based on the Gasser–Müller-type one-sided regression estimators

m̃
(ν)
± (x) = 1

hν+1

n∑
j=1

Y[j]

∫ sj

sj−1

M±
ν

(x − u

h

)
du ,

where M+
ν and M−

ν are one-sided kernel functions with supports [−1, 0] and [0, 1] respec-
tively, which satisfy M+

ν (x) = (−1)νM−
ν (−x) and M−

ν (0) = 0. Here sj = 1
2 (X(j)+X(j+1)) ,

s0 = 0, sn = 1 and (X(j), Y[j]), j = 1, . . . , n, denote the (Xj, Yj ) ordered with respect to
the Xj values.

We consider the uniform fixed (UF) design, and the three random design densities of X:

f1(x) = I (0 ≤ x ≤ 1) ,

f2(x) = p1ϕ
(x − 0.5

0.40

)
I (0 ≤ x ≤ 1) ,

f3(x) = p2

(
ϕ
(x − 0.25

0.15

)
+ ϕ

(x − 0.75

0.15

))
I (0 ≤ x ≤ 1) ,
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432 J. HUH AND B.U. PARK

where ϕ denotes the standard normal density function, and the pi are the normalizing con-
stants to make fi proper densities. The densities f2 and f3 are unimodal and bimodal,
respectively. The errors εi in (1) are assumed to be normally distributed.

For the regression function, we consider the function m1 in Nason & Silverman (1994)
with a change point at τ = 0.5. We take the jump size �0 = −0.5. Thus, m1 is given by

m1(x) =




4x2(3 − 4x) 0 ≤ x < 1
2 ,

4
3x(4x

2 − 10x + 7)− 3
2

1
2 ≤ x < 3

4 ,
16
3 x(x − 1)2 3

4 ≤ x ≤ 1.

The conditional variance v(x) is 0.25 for all x.
Our second example concerns a regression function which has a change point in the first

derivative. The regression function m2 is given by

m2(x) =
{

1
2 sin(4πx)+ 1

2 0 ≤ x < 1
2 ,

− 1
2 sin(4πx)+ 1

2
1
2 ≤ x ≤ 1.

We choose v(x) = 0.10 for all x, and the jump size of the first derivative is �1 = −4π at
the location of the change point τ = 0.5.

We consider the one-sided kernel function K(x) = 3
2 (1 − x2) I (0 ≤ x ≤ 1) and the

degree of the local polynomial p = 1 for the LPCP estimators. The kernel functions M−
0 (x) =

12x(1 − x)(3 − 5x) I (0 ≤ x ≤ 1) and M−
1 (x) = 60x(1 − x)(1 − 2x) I (0 ≤ x ≤ 1) in Müller

(1992) are chosen for the Müller estimator in the models m1 and m2 , respectively. These
kernels vanish at the left end of the support.

Table 1 contains the results of the simulations based on 1000 pseudo samples of size 1000.
To estimate the location of the change point, we first compute the jump sizes at xk = k/500, k =
1, . . . , 500, and then choose a point which maximizes the absolute value of the calculated
jump sizes over the interval Q. As suggested in Müller (1992), we take Q = [h, 1 − h] for
our simulation settings. We compute the Monte Carlo estimates of the root mean squared
errors (RMSE) of the LPCP estimator and the one by Müller (1992), the latter being denoted
by M, for various values of bandwidth h. We report here the minimum RMSEs of τ̂ over h
and the minimizing bandwidths hτ̂ . The table also includes the averages of τ̂ and �̂, and the
RMSEs of �̂ when hτ̂ are used. Standard errors of these Monte Carlo estimates are given in
the parentheses. The standard errors of the RMSEs are obtained by the formula

(SE of RMSE) = 1
2

(√
RMSE2 + (SE of RMSE2)−

√
RMSE2 − (SE of RMSE2)

)
,

where the standard error of RMSE2 is calculated in the usual way; e.g. the standard error of

RMSE2 of τ̂ based on 1000 Monte Carlo samples equals 1
1000

√∑1000
i=1 ((τ̂i − τ)2 − RMSE2)2.

The table shows that, in every case, the LPCP estimator has less RMSE than the estimator M in
terms of estimating τ. The LPCP outperforms M with the ratios of the RMSEs roughly between
1
4 and 1

2 for m1 and for every design density. For m2 , these ratios are much smaller than for
m1 . The ratios lie between 1

6 and 1
3 approximately.

As mentioned in Remark 4, the density at the change point τ has a crucial influence on the
performance of the LPCP estimators. In our eight simulation models, the RMSEs of τ̂ for the
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Table 1

The minimum RMSEs of τ̂ over h and the minimizing bandwidths hτ̂ . Also included are the aver-
ages of τ̂ and �̂, and RMSEs of �̂ when hτ̂ are used, with the standard errors given in parentheses.

Case hτ̂ Estimator Average of τ̂ RMSE of τ̂ Average of �̂ RMSE of �̂

(m1,UF) 0.15 LPCP 0.500406 0.001586 –0.500454 0.059716
(0.000048) (0.000084) (0.001888) (0.001281)

0.10 M 0.500660 0.003237 –0.522328 0.086267
(0.000100) (0.000089) (0.002635) (0.001913)

(m1, f1) 0.11 LPCP 0.500230 0.001847 –0.508728 0.068673
(0.000058) (0.000105) (0.002154) (0.001500)

0.14 M 0.500264 0.004646 –0.522517 0.084894
(0.000147) (0.000136) (0.002588) (0.001820)

(m1, f2) 0.12 LPCP 0.500088 0.001039 –0.506832 0.049970
(0.000033) (0.000070) (0.001565) (0.001131)

0.16 M 0.500520 0.003722 –0.526550 0.066566
(0.000117) (0.000090) (0.001930) (0.001473)

(m1, f3) 0.12 LPCP 0.500464 0.002800 –0.513091 0.077498
(0.000087) (0.000140) (0.002415) (0.001691)

0.16 M 0.500494 0.005603 –0.528391 0.091346
(0.000176) (0.000158) (0.002746) (0.001993)

(m2,UF) 0.12 LPCP 0.500034 0.002592 –9.758507 2.846361
(0.000082) (0.000061) (0.014754) (0.014642)

0.70 M 0.499846 0.007305 –11.645859 1.318820
(0.000231) (0.000123) (0.029865) (0.024385)

(m2, f1) 0.12 LPCP 0.499988 0.002583 –9.660561 2.939372
(0.000082) (0.000067) (0.014006) (0.014047)

0.08 M 0.500552 0.010571 –11.144008 1.923343
(0.000334) (0.001419) (0.040941) (0.174435)

(m2, f2) 0.12 LPCP 0.500108 0.002165 –9.671326 2.921531
(0.000068) (0.000050) (0.012412) (0.012358)

0.07 M 0.500402 0.009428 –11.601712 1.655966
(0.000298) (0.001052) (0.042564) (0.201045)

(m2, f3) 0.12 LPCP 0.500054 0.003224 –9.526879 3.079188
(0.000102) (0.000090) (0.015585) (0.015707)

0.09 M 0.500014 0.018184 –10.608519 2.566069
(0.000575) (0.004697) (0.052455) (0.205019)

density f2 are smaller than those for UF and the density f1 because the value of the density f2
at τ is larger than the values of UF and f1 . By the same reasoning, the RMSEs of τ̂ for UF and
the density f1 are superior to those for the density f3 . Comparing the simulation results for
UF and f1 , we find that the RMSEs of M for UF are relatively smaller than those for f1 , while
the RMSEs of LPCP for UF are similar to those for f1 . This can be expected because (see Jones,
Davies & Park, 1994) for the Gasser–Müller regression estimator, the asymptotic variance in
the random design case is 1.5 times larger than the asymptotic variance in the corresponding
fixed design case. These two are identical for the local polynomial regression estimator.

In the case of m2 , the averages and the RMSEs of �̂ of the estimator M seem to be
superior to those of LPCP, but the values reported here are for bandwidths which minimize the
RMSEs of τ̂. We find that the minimum RMSEs of the LPCP �̂ are usually smaller than those
of M. Table 2 reports the minimum RMSEs of �̂ over h with the minimizing bandwidths h

�̂
.

It also shows the averages of τ̂ and �̂, and RMSEs of τ̂ when h
�̂

are used. Although the

RMSEs of τ̂ in Table 2 are for the bandwidths which minimize the RMSEs of �̂, those for
LPCP are rather smaller than those for M.
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Table 2

The minimum RMSEs of �̂ over h and the minimizing bandwidths h
�̂
. Also included are the aver-

ages of τ̂ and �̂, and RMSEs of τ̂ when h
�̂

are used, with the standard errors given in parentheses.

Case h
�̂

Estimator Average of τ̂ RMSE of τ̂ Average of �̂ RMSE of �̂

(m1,UF) 0.25 LPCP 0.500496 0.001625 –0.519848 0.051166
(0.000049) (0.000082) (0.001491) (0.001153)

0.20 M 0.501952 0.004738 –0.538073 0.069735
(0.000137) (0.000119) (0.001847) (0.001463)

(m1, f1) 0.23 LPCP 0.500612 0.002147 –0.525066 0.052336
(0.000065) (0.000124) (0.001453) (0.001185)

0.21 M 0.501472 0.005415 –0.538529 0.075928
(0.000165) (0.000133) (0.002069) (0.001653)

(m1, f2) 0.20 LPCP 0.500222 0.001137 –0.518813 0.044045
(0.000035) (0.000077) (0.001259) (0.001011)

0.18 M 0.500748 0.003930 –0.530928 0.065780
(0.000122) (0.000107) (0.001836) (0.001437)

(m1, f3) 0.24 LPCP 0.501250 0.003247 –0.531248 0.059228
(0.000095) (0.000173) (0.001591) (0.001326)

0.26 M 0.503438 0.006920 –0.549967 0.080100
(0.000190) (0.000170) (0.001980) (0.001661)

(m2,UF) 0.07 LPCP 0.500194 0.003275 –11.788341 1.267834
(0.000103) (0.000082) (0.031656) (0.026466)

0.06 M 0.500052 0.007472 –12.176618 1.210304
(0.000236) (0.000127) (0.036234) (0.025968)

(m2, f1) 0.06 LPCP 0.500080 0.003773 –11.955366 1.342218
(0.000119) (0.000096) (0.037792) (0.029243)

0.06 M 0.499132 0.018497 –12.304319 1.539952
(0.000584) (0.005378) (0.047987) (0.158480)

(m2, f2) 0.06 LPCP 0.500050 0.003395 –11.916279 1.249040
(0.000107) (0.000091) (0.033727) (0.027588)

0.06 M 0.499698 0.017854 –12.181929 1.460146
(0.000565) (0.005113) (0.044545) (0.169504)

(m2, f3) 0.07 LPCP 0.500032 0.004241 –11.660030 1.437004
(0.000134) (0.000102) (0.035264) (0.028807)

0.07 M 0.499414 0.019632 –11.831970 1.723373
(0.000621) (0.005013) (0.049302) (0.201107)

5. Proofs

See http://stats.snu.ac.kr/∼brain03/download/papers/park/cplp.ps for a more detailed
proof than the one we sketch here.

Let m̄+(x, u) = ∑ν
�=0 m

(�)
+ (x)(u − x)�/�!, m̄−(x, u) = ∑ν

�=0 m
(�)
− (x)(u − x)�/�! and

�̃ν(x) = m̃
(ν)
+ (x)− m̃

(ν)
− (x) where

m̃
(ν)
± (x) = ν!

nhν+1

n∑
j=1

W±
ν

(
x,±Xj − x

h

)(
Yj − m̄±(x,Xj )

)
.

It follows that

�̂ν(x) =
{
�̃ν(x) x �= τ ,

�̃ν(τ)+�ν x = τ ,

since the weights W±
ν satisfy the following discrete moment conditions (see Fan & Gijbels,
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1996 p .103):

1

nhν+1

n∑
j=1

W±
ν

(
x, ±Xj − x

h

)
(Xj − x)� = δν� (0 ≤ ν, � ≤ p) . (15)

This implies that

ϕnν(z) = aν+1
nν

(
�̃ν

(
τ + h

anν
z
)

− �̃ν(τ)−�ν

)
for all z �= 0 ,

where

anν =
{
(nh2ν+1)1/(2ν+1) when ν is even,

(nh2ν+1)1/2ν when ν is odd.

Define znν = zh/anν . By (15), we have the following identity:

�ν = 1

nhν+1

n∑
j=1

W±
ν

(
τ + znν, ±Xj − τ − znν

h

)
(Xj − τ − znν)

ν�ν . (16)

Let

C+
nν(w, u, z) = 1

f(τ + znν)
K+
ν

(w− τ − znν

h

)(
u− m̄+(τ + znν, w)

− (w− τ − znν)
ν �ν

ν!
I (z < 0)

)
− 1

f(τ)
K+
ν

(w− τ

h

)(
u− m̄+(τ, w)

)
,

C−
nν(w, u, z) = 1

f(τ + znν)
K−
ν

(τ + znν − w

h

)(
u− m̄−(τ + znν, w)

+ (w− τ − znν)
ν �ν

ν!
I (z > 0)

)
− 1

f(τ)
K−
ν

(τ − w

h

)(
u− m̄−(τ, w)

)
,

φnν(z) = aν+1
nν

ν!

nhν+1

n∑
j=1

(
C+
nν(Xj, Yj, z)− C−

nν(Xj, Yj, z)
)

for z �= 0, and φnν(0) = 0. It follows from (5), (6) and (16) that ϕnν(z) = φnν(z)(1 + op(1))
uniformly in z ∈ [−M,M]. We need the following four lemmas to prove Theorem 1.

Lemma 1. Suppose that Assumptions A1, A2, A4, A5 and A6 are satisfied. Then,

E
(
φnν(z)

) = − �ν

ν + 1
K−
ν (0)|z|ν+1 + o(1)

uniformly in z ∈ [−M,M].

Proof. We prove the lemma for z > 0, as the other case can be dealt with similarly. By
Assumptions A1, A2 and A4, it can be shown that

E
(
C+
nν(X1, Y1, z)

) = O
(hν+2

anν

)
(17)
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uniformly in z. Now, by Assumption A2,

E
(
C−
nν(X1, Y1, z)

) = h

∫
K−
ν (u)

(
m(τ + znν − hu)− m̄−(τ + znν, τ + znν − hu)

+ (−hu)ν�ν

ν!
−m(τ − hu)+ m̄−(τ, τ − hu)

)
du

(
1 +O(h)

)
+ h

∫
K−
ν (u)

(f(τ + znν − hu)

f(τ + znν)
− f(τ − hu)

f(τ)

)(
m(τ − hu)− m̄−(τ, τ − hu)

)
du ,

(18)

where the O(h) term is uniform in z ∈ [−M,M]. The second term of (18) is O(hν+3/anν)

uniformly in z by (A1) and (A2). For the first term, we divide the interval of integration into
two parts since the change point τ lies between τ+ znν −h and τ+ znν . For 0 < u ≤ z/anν ,

m(τ + znν − hu)− m̄−(τ + znν, τ + znν − hu) = m
(ν)
− (τ∗

−)−m
(ν)
− (τ + znν)

ν!
(−hu)ν , (19)

where τ∗
− lies between τ + znν and τ + znν − hu. However, for z/anν < u < 1,

m(τ + znν − hu)− m̄−(τ + znν, τ + znν − hu)

= −�ν

ν!
(znν − hu)ν +

(m(ν)
− (τ′

−)−m
(ν)
− (τ)

ν!
− m

(ν)
+ (τ′′

+)−m
(ν)
+ (τ)

ν!

)
(znν − hu)ν , (20)

where τ′
− lies between τ and τ + znν − hu and τ′′

+ lies between τ and τ + znν .
By (19) and (20), the integral of the first term in (18) equals∫ z/anν

0
K−
ν (u)

�ν

ν!
(znν − hu)ν du+O

(hν+1

anν

)
(21)

uniformly in z. Combining (17) and (21), we have that

E
(
φnν(z)

) = −aν+1
nν �ν

∫ z/anν

0
K−
ν (u)

( z

anν
− u

)ν
du+O(aνnνh)

uniformly in z ∈ [0,M]. Since K−
ν (u) = K−

ν (0)(1 + o(1)) uniformly for u ∈ [0,M/anν],
the result follows.

Lemma 2. Suppose that Assumptions A1–A6 are satisfied.

(i) If ν is even, then

cov
(
φnν(z1), φnν(z2)

)
=




4(ν!)2v(τ)+�2
0 I (ν = 0)

f(τ)
min(|z1|, |z2|)K−

ν (0)
2 + o(1) z1z2 ≥ 0,

o(1) elsewhere,

uniformly in z1, z2 ∈ [−M,M].
(ii) If ν is odd, then

cov
(
φnν(z1), φnν(z2)

) = 2(ν!)2z1z2
v(τ)

f(τ)

∫ 1

0
K′−
ν (u)2 du+ o(1)

uniformly in z1, z2 ∈ [−M,M].
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Proof. We prove the lemma for z1, z2 > 0 first. By Lemma 1,

cov
(
φnν(z1),φnν(z2)

) = n(ν!)2
a2(ν+1)
nν

(nhν+1)2
E

(
C+
nν(X1, Y1, z1)C

+
nν(X1, Y1, z2)

− C+
nν(X1, Y1, z1)C

−
nν(X1, Y1, z2)− C−

nν(X1, Y1, z1)C
+
nν(X1, Y1, z2)

+ C−
nν(X1, Y1, z1)C

−
nν(X1, Y1, z2)

) +O(n−1) . (22)

Now, define zmin = min(z1, z2) and zmax = max(z1, z2) and τmin
nν = τ + zminh/anν and

τmax
nν = τ + zmaxh/anν . Let

D+
nν(w, z) = 1

f(τ + znν)
K+
ν

(w− τ − znν

h

)
− 1

f(τ)
K+
ν

(w− τ

h

)
,

D−
nν(w, z) = 1

f(τ + znν)
K−
ν

(τ + znν − w

h

)
− 1

f(τ)
K−
ν

(τ − w

h

)
.

Consider the first term in the brackets in (22) first. By the definition of m̄+ , we have

sup
u∈[x,x+h]

|m(u)− m̄+(x, u)| ≤ (const.)hν+1 (23)

for x = τ or τ + znν . By Assumptions A2–A5 and (23),

E
(
C+
nν(X1, Y1, z1)C

+
nν(X1, Y1, z2)

)
= E

(
D+
nν(X1, zmin)D

+
nν(X1, zmax)

(
Y1 −m(X1)

)2) +O(h2ν+3)

= h
v(τ)

f(τ)

(
K+
ν (0)

2 zmin

anν
+K+

ν (0)K
′+
ν (0)

zminzmax

a2
nν

(
1 + o(1)

))(
1 +O(h)

)

+
∫ τmax

nν +h

τmax
nν

D+
nν(u, zmin)D

+
nν(u, zmax)v(u)f(u) du+O(h2ν+3) (24)

uniformly in z1 and z2 .
Next, consider the second term in the brackets in (22) for the case zmin = z1 . The other

cases can be dealt with in a similar way. We note that C+
nν(w, u, z) = 0 for w < τ, and that

sup
u∈[τ,τ+znν]

|m(u)− m̄±(τ + znν, u)| ≤ (const.)
( h

anν

)ν+1 ;

sup
u∈[τ,τ+znν]

|m(u)− m̄+(τ, u)| ≤ (const.)
( h

anν

)ν+1 ;

sup
u∈[τ,τ+znν]

∣∣∣m(u)− m̄−(τ, u)− �ν

ν!
(u− τ)ν

∣∣∣ ≤ (const.)
( h

anν

)ν+1
. (25)

By (23) and (25),

E
(
C+
nν(X1, Y1, z1)C

−
nν(X1, Y1, z2)

)
= −hv(τ)

f(τ)

(
K+
ν (0)K

−
ν (0)

zmin

anν
+ 1

2

(
K+
ν (0)K

′−
ν (0)+K′+

ν (0)K−
ν (0)

)
(26)

×
(

2
zminzmax

a2
nν

−
(zmin

anν

)2)(
1 + o(1)

))(
1 +O(h)

) +O
(( h

anν

)2ν+2 + h2ν+3
)
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uniformly in z1 and z2 . Analogously,

E
(
C−
nν(X1, Y1, z1)C

+
nν(X1, Y1, z2)

)
= −hv(τ)

f(τ)

(
K−
ν (0)K

+
ν (0)

zmin

anν
+ 1

2

(
K−
ν (0)K

′+
ν (0)+K′−

ν (0)K+
ν (0)

)
×

(zmin

anν

)2(
1 + o(1)

))(
1 +O(h)

) +O
(( h

anν

)2ν+2 + h2ν+3
)

(27)

uniformly in z1 and z2 . Now we consider the last term in the brackets in (22). We have

sup
u∈[τ−h,τ)

|m(u)− m̄−(τ, u)| ≤ (const.)hν+1 . (28)

On the other hand, by (20),

sup
u∈[τ+znν−h,τ)

∣∣∣m(u)− m̄−(τ + znν, u)+ �ν

ν!
(u− τ − znν)

ν
∣∣∣ ≤ (const.)hν+1 . (29)

By (28) and (29) with the definition of C−
nν , the last term at (22) equals

E
(
C−
nν(X1, Y1, z1)C

−
nν(X1, Y1, z2)

) = h

f(τ)

((
v(τ)+�2

0 I (ν = 0)
)
K−
ν (0)

2 zmin

anν

+ v(τ)K−
ν (0)K

′−
ν (0)

zminzmax

a2
nν

(
1 + o(1)

))(
1 +O(h)

)
+

∫ τ

τ−h
D−
nν(u, zmin)D

−
nν(u, zmax)v(u)f(u) du+O

(( h

anν

)2ν+1
I (ν �= 0)+ h2ν+3

)
(30)

uniformly in z1 and z2 . Combining the first leading terms in (24), (26), (27) and (30) con-
cludes the proof of Lemma 2(i) for the case z1, z2 > 0.

Next, we prove the second part of the lemma for the case z1, z2 > 0. If ν is odd, all
terms in the brackets in (24), (26), (27) and (30) are cancelled due to the relation (12). Note
that D±

nν(w, z) = O(a−1
nν ) uniformly in w and z by Assumptions A2 and A4. Hence, the

integral terms in (24) and (30) are O(h/a2
nν). Since h2/anν = o(h/a2

nν) for odd ν by the
assumption nh2ν+3 → 0 in Assumption A5, the O(h2/anν) terms in (24), (26), (27) and
(30) are negligible. Thus, it is enough to consider the integral terms in (24) and (30). By
Assumptions A2 and A4, the integral term in (24) can be written as

h
zminzmax

a2
nν

v(τ)

f(τ)

∫ 1

0
K′+
ν (u)2 du

(
1 + o(1)

)
(31)

uniformly in z1 and z2 . Similarly, we can show that the integral term in (30) equals

h
zminzmax

a2
nν

v(τ)

f(τ)

∫ 1

0
K′−
ν (u)2 du

(
1 + o(1)

)
(32)

uniformly in z1 and z2 . From (12), (31) and (32), Lemma 2(ii) follows for the case z1, z2 > 0.
It can be shown in a similar way that the lemma follows for the case z1, z2 < 0 too.

Following the lines in the proof for the case z1z2 > 0, we obtain the results for the case
z1z2 < 0. This concludes the proof.
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Lemma 3. Suppose that the assumptions in Theorem 1 are satisfied. For each z ∈ [−M,M],
φnν(z) satisfies Lyapounov’s condition.

Proof. By Lemma 2, var(φnν(z)) = O(1). It can be shown that, for some positive ζ,

( aν+1
nν

nhν+1

)2+ζ n∑
j=1

E
(∣∣C+

nν(Xj, Yj, z)− C−
nν(Xj, Yj, z)

∣∣2+ζ) −→ 0 as n → ∞ .

This implies the result.

Lemma 4. Suppose that the assumptions in Theorem 1 are satisfied. Then, the sequence of
the process ψnν(·) = φnν(·)− E(φnν(·)) is tight.
Proof. By Lemma 2, there exists a positive constant C3 such that

E
((
ψnν(z1)− ψnν(z2)

)2) = var
(
φnν(z1)

) + var
(
φnν(z2)

) − 2 cov
(
φnν(z1), φnν(z2)

)
≤

{
C3|z2 − z1| when ν is even,

C3(z2 − z1)
2 when ν is odd,

for sufficiently large n. According to Billingsley (1968 Theorem 12.3), this concludes the
proof of Lemma 4.

Proof of Theorem 1. Lemma 3 implies that ψnν(z), for fixed z ∈ [−M,M], converges
weakly to a normal distribution. Furthermore, by the Cramér–Wold device we can show that
for fixed z1, . . . , z�, zi ∈ [−M,M],

(
ψnν(z1), . . . , ψnν(z�)

) d→ N�(0, 8) ,

where N� denotes the �-variate normal distribution and 8 is the asymptotic covariance de-
scribed in Lemma 2. This concludes the proof. See Billingsley (1968 Theorems 8.1 and 12.3).

Proof of Theorem 2. Consider the case �ν > 0. The other case �ν < 0 can be treated in
the same way. According to Billingsley (1968 Theorem 5.1), we have

argmax
z∈[−M,M]

ϕnν(z)
d→ argmax

z∈[−M,M]
ϕν(z) (33)

for any M > 0. If we prove

sup
x∈Q,|x−τ|≥(h/anν)M

�̂ν(x) = op(1)

for any M > 0, the result (33) can be extended to the whole real line (−∞,∞). The uniform
convergence can be proved by a standard technique; see e.g. Mack & Silverman (1982). By
(13), the asymptotic distribution of τ̂ in Theorem 2(ii) is obtained explicitly for odd ν.

Proof of Corollary 1. Theorem 1 shows that
√
nh2ν+1(�̂ν(τ̂)− �̂ν(τ))

p→ 0. Now,

√
nh2ν+1

(
�̂ν(τ̂)−�ν

) =
√
nh2ν+1

(
�̂ν(τ̂)− �̂ν(τ)

) +
√
nh2ν+1

(
�̂ν(τ)−�ν

)
. (34)
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Note that �̂ν(τ) = �̃ν(τ)+�ν . Define

λ̃ν(τ) = ν!

nhν+1f(τ)

n∑
j=1

(
K+
ν

(Xj − τ

h

)(
Yj−m̄+(τ,Xj )

)−K−
ν

(τ −Xj

h

)(
Yj−m̄−(τ,Xj )

))
.

By (5) and (6),
√
nh2ν+1(�̃ν(τ)− λ̃ν(τ)) = op(1). According to Assumptions A1, A2 and A4,√

nh2ν+1 E(λ̃ν(τ)) =
√
nh2ν+1O(h) which is o(1) by the assumption nh2ν+3 → 0 in As-

sumption A5. Now, since the support of K is [0, 1],

nh2ν+1var
(
λ̃ν(τ)

) = (ν!)2
v(τ)

f(τ)

( ∫
K+
ν (u)

2 +
∫

K−
ν (u)

2
)
du

(
1 +O(h)

) +O(h2ν+1) .

Using Assumption A7, the Lyapounov’s condition for
√
nh2ν+1 λ̃ν(τ) is satisfied. These

together with (34) imply Corollary 1.
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